SURGICAL TECHNIQUE PROXIMAL TIBIAL NAILS

Medical device description

The implant system consists of the nail, locking screws, end cap and alternatively compression screw.

Proximal tibial nails

The implant system consists of the nail, locking screws, end cap and alternatively compression screw. The nails are full of Ø 8–10 mm and cannulated of Ø 9–12 mm and are anatomically pre-bended in the proximal 80 mm by 10° and in distal 60 mm by 4°.

Locking screws for nails of Ø 9–12 mm:

Locking screw of Ø 5 mm with cortical thread are available in lengths of 25–105 mm in increments of 5 mm.

Locking screw of Ø 5 mm with lowered cortical thread are available in lengths of 25–90 mm in increments of 5 mm.

Locking screws for nails of Ø 8 mm:

Locking screw of Ø 3.5 mm with lowered cortical thread are available in lengths of 20–50 mm in increments of 2 mm and in lengths of 55–70 mm in increments of 5 mm.

End caps

End caps are made in three sizes of 0 mm, 5 mm a 10 mm. Size 0 mm is completely hidden in nail, sizes 5 mm and 10 mm overlap the nail proximally by 5 mm and 10 mm respectively.

Compression screws

Compression screws are made in two diameters – Ø 3.2 mm for nails of Ø 8 mm and Ø 4.4 mm for nails of Ø 9–12 mm.

Proximal two pairs of holes for the locking screws are oriented at 35° angle po-

steromedially or rather posterolaterally into the condyles of tibial plateau. The

second pair of the locking screws heading to the right has slight 10 ° proximal

direction to ensure that the first two proximal screws will "prominate" through

Indications

Tibial nail is intended for osteosynthesis of metaphysis, diaphysis and simple intercondylar proximal and distal tibia fractures. Mainly for fracture treatment of types 41–A2, A3; 42; 43–A1, A2, A3 according to Müller.

Planning prior the procedure

Pre-select suitable implants. Measure approximately the diameter of the medullary cavity in its narrowest place on the X-ray image, and thus pre-determine the planned diameter of the nail. It is advisable to plan the placement of complementary implants (screws for stabilization of fragments of the comminuted metaphyseal fracture of proximal or distal tibial metaphyses), possibly supporting implants (K-wires, delimitation screws) to ensure ideal nail introduction.

Preparation of instrumentation and implants

It is necessary to check before the surgery:

- the completeness and functionality of all parts of the instrumentation
- the correct assembly of the aiming device and nail
- to try the functionality of the aiming; verify this with guide and drill sleeves and the appropriate drills

IF THE NAIL HOLES DO NOT CORRESPOND TO THE HOLES OF THE AIMING DEVICE IT IS NOT POSSIBLE TO PROCEED TO THE SURGERY.

Surgical technique

1. The patient's position

Position the patient on the operating table lying on their back. It is possible to use a standard or traction operating table according to the surgeon custom. Position of the operated limb, which requires flexion in the knee joint in range from 100° up to 110°, is a condition of the smooth implantation of the tibial nail. Furthermore the surgeon must be able to perform peroperative X-ray checks using amplifier in the AP and lateral projections throughout the entire lower leg. It is necessary to perform position of the operated limb and setting of X-ray before the surgical team washing. Traction can be performed using skeletal calcaneal drilling, soft traction by figure-of-eight bandage or one-time traction during surgery.

2. Reduction

Reposition fragments into the original anatomical position. Reposition fragments of the tibial plateau, fix their position by K-wires. Then perform osteosynthesis using cancellous screws. Check reposition using X-rays. Keep in mind that poor repositioning of the tibial plateau fragments and metaphyseal fractures can lead to healing of the fracture in malposition and can negatively affect the proper functioning of the knee and ankle joint.

3. Entry point

Perform approximately five centimetre longitudinal incision over the centre of lig. proprium patellae. Cut the ligamentum longitudinally, pull both halves apart and keep their position with a retractor. The entry point is localised about 5 mm behind the front edge of tibia, in the extension of its longitudinal axis.

Introduce a K-wire of Ø 2 mm approximately 5 mm dorsally from the front edge of tibia, with inclination of about 10° dorsally and about 60 mm deep (Fig. a).

Create an entry point:

- 1. using a bended cannulated perforator of Ø 13 mm (Fig. b)
- 2. using a cannulated pre-drilling cutter of Ø 9/12 mm and protection sleeve of Ø 12 mm (Fig. c)
- 3. using a hand cannulated perforator and protection sleeve of Ø 12 mm (Fig. d)

TAKE EXTRA CAUTION DURING THE ENTRY POINT CREATION TO AVOID PERFORATING OF THE DORSAL SURFACE OF THE PROXIMAL TIBIA.

4. Medullary cavity preparation

Nail is intended for nailing without pre-drilling. You can pre-drill the cavity in certain indications (e.g. non-union) with the flexible cutters. Introduce the introducer with an olive into the cavity. Always cut the cavity with cutters step by step from Ø 8 up to diameter 1 mm bigger than is the diameter of the chosen nail. It is not recommended to irrigate the medullary cavity after pre-drilling, on the contrary, it is advisable to return the bone material into the cavity – the so-called internal spongioplasty. The irrigation after pre-drilling is recommended only in case that infarction is solved. Remove the introducer with an olive. You can use introducer without an olive if you introduce cannulated nail.

5. Completing of aiming device with mallet

The aiming device is supplied with a clap for the Tibial nail and with second clap for the Tibial proximal nail. Connect the clap with the chosen nail using a screw and tighten it.

Note: Clap with the arm of the aiming device can be alternatively connected after the nail introduction.

Slide the weight onto the hammer rod and screw the handle. After screw the mallet into the aiming device clap (Fig. 9-11).

6. Nail introduction

Nail can be introduced by the light mallet blows as carefully as possible. Consider the correct selection of the nail diameter in case of difficulty when introducing the nail, or replace it with a nail of the corresponding length but with a smaller diameter. Pull out the nail slightly by the back tapping of the mallet into the handle in the case of excessive nail introduction into the tibia as at the extraction, but be careful that the nail in the resulting position is not short and that it reaches distally far enough below the fracture line level. Perform fragment reposition back to the anatomical position and verify under X-rays (Fig. 1) in the case that fragment dislocation happened during the nail introduction.

Alternatively you can use an impactor instead of a mallet. In this case when hard introduction tap on a driver with a surgical mallet (Fig. 2).

Remove the mallet or the driver after the nail introduction.

You can use K-wire introduced into the red colour marked holes in the arm to check the correct depth of the nail introduction in respect to the tibia (Fig. 3).

Perform the correct nail introduction and rotation towards the locking - position under the X-ray check of the K-wire of Ø 2 mm introduced together with sleeves of Ø 10/8 mm (with little tongues) and Ø 8/2.5 mm (marked by purple) into two proximal holes in the nail (Fig. 4).

7. Pre-drilling of the proximal bone screws

7.1. Locking screw of Ø 5 mm, full thread

Introduce a sleeve of Ø 10/8 mm (with little tongues) together with trocar into the hole in the nail and perform incision at the site of contact with the skin. Always introduce a sleeve of Ø 10/8 mm (with little tongues) together with trocar, it will facilitate the aiming device introduction up to corticalis and prevent soft tissues intrusion into the sleeve. Carefully tap the trocar together with the sleeve using mallet and push to the bone (Fig. 5). Remove the trocar.

Insert the sleeve of Ø 8/3.5 mm (marked by yellow) for pre-drilling of the holes for the locking screws of Ø 5 mm and drill through both fragment using the drill of Ø 3.5 mm (marked by yellow). It is possible to read the depth of the drilled hole directly from the relevant drill when kept the condition that the drilling sleeve of Ø 8/3.5 mm (marked by yellow) is tightly pushed onto the guide sleeve (with little tongues) and tightly pushed onto the bone (Fig. 6).

INSERT THE SCREWS IN THE AREA OF PROXIMAL TIBIA MONOCORTICALLY ONLY!

Remove the sleeve of Ø 8/3.5 mm (marked by yellow) and drill of Ø 3.5 mm (marked by yellow).

Note: Insert a sleeve of Ø 8/5 mm (**marked by white**) and drill through the first fragment only using a drill of Ø 5 mm (**marked by white**) if you need to perform compression or pull fragment in the area of the proximal metaphysis or tibial condyle. It is possible to read the depth of the drilled hole directly from the relevant drill when kept the condition that the drilling sleeve of Ø 8/5 mm (**marked by white**) is tightly pushed onto the guide sleeve (**with little tongues**) and tightly pushed onto the bone (Fig. 7).

These instruments are available only on special order.

7.2 Locking reinforced screw of Ø 5 mm, lowered thread

Insert the sleeve of Ø 8/4.4 mm (**marked by red**) for the pre-drilling of the hole for the locking reinforced screws of Ø 5 mm with the lowered thread and drill through both fragment using the drill of Ø 4.4 mm (**marked by red**). It is possible to read the depth of the drilled hole directly from the relevant drill when kept the condition that the drilling sleeve of Ø 8/4.4 mm (**marked by yellow**) is tightly pushed onto the guide sleeve (**with little tongues**) and tightly pushed onto the bone (Fig. 8).

INSERT THE SCREWS IN THE AREA OF PROXIMAL TIBIA MONOCOR-TICALLY ONLY!

Remove the sleeve of Ø 8/4.4 mm (marked by red) and drill of Ø 3.5 mm (marked by red).

Note: Insert a sleeve of Ø 8/5 mm (marked by white) and drill through the first fragment only using a drill of Ø 5 mm (marked by white) if you need to perform compression or pull fragment in the area of the proximal metaphysis or tibial condyle. It is possible to read the depth of the drilled hole directly from the relevant drill when kept the condition that the drilling sleeve of Ø 8/5 mm (marked by white) is tightly pushed onto the guide sleeve (with little tongues) and tightly pushed onto the bone.

These instruments are available only on special order.

7.3 Locking reinforced screw of Ø 3.5 mm, lowered thread

Pre-drill the locking screw of Ø 3.5 mm using the drill of Ø 2.9 mm (marked by green) introduced through the sleeve of Ø 8/2.9 mm (marked by green). It is possible to read the depth of the drilled hole directly from the relevant drill when kept the condition that the drilling sleeve of Ø 8/2.9 mm (marked by green) is tightly pushed onto the guide sleeve (with little tongues) and tightly pushed onto the bone (Fig. 9).

INSERT THE SCREWS IN THE AREA OF PROXIMAL TIBIA MONOCOR-TICALLY ONLY!

Remove the sleeve of Ø8/2,9 mm (marked by green) and drill of Ø2,9 mm (marked by green).

Note: Insert a sleeve of Ø 8/5 mm (marked by yellow) and drill through the first fragment only using a drill of Ø 3.5 mm (marked by yellow) if you need to perform compression or pull fragment in.. It is possible to read the depth of the drilled hole directly from the relevant drill when kept the condition that the drilling sleeve of Ø 8/3.5 mm (marked by green) is tightly pushed onto the guide sleeve (with little tongues) and tightly pushed onto the bone (Fig. 10).

8. Introduction of the proximal bone screws

Measure depth of a pre-drilled hole for a screw by depth gauge. Measurement is exact only when the guide sleeve **(with little tongues)** is tightly pushed to the bone (Fig. 11).

Complete the screwdriver and insert the corresponding locking screw. Measure the depth of screwing on the shaft of the screwdriver. Repeat this process for the required number of locking screws (Fig. 12a, 12b).

Note: It is possible to connect the screwdrivers with the axial handle or T-handle.

Use the screwdriver 6HR 5 mm with the locking for the locking screws of Ø 5 mm.

Use the screwdriver 6HR 3.5 mm with the locking for the locking screws of Ø 3.5 mm.

Remove the aiming device after the introduction of the required proximal screws and close the nail with the corresponding end cap (Fig. 13a).

Note: It is not necessary to secure the nail in the four proximal holes at the osteosynthesis of the diaphysis fractures. It is sufficient to secure the nail in the dynamic, static or possibly in both holes depending on the fracture type.

Note: A compression can be performed at a maximum range of 10 mm using a compression screw after locking of the nail with distal locking screws during the introduction of the locking screw into the dynamic hole. This screw is introduced into the nail same way as the end cap after the aiming device removal from the top to the nail. The introduced compression screw serves also as an end cap so it is not necessary to introduce the end cap in this case (Fig. 13b).

THE NAIL HAS TO BE LOCKED IN ITS DISTAL PART FOR SUCH PERFORMED COMPRESSION AND THE STATIC LOCKING MUST NOT BE USED IN THE PROXIMAL PART.

9. Distal locking

Distal locking is performed using the same locking screws of Ø 3.5 for nail of Ø 8 mm and Ø 5 mm for nail diameters of 9–12 mm with a free hand. The screws can be introduced in the frontal plane - mediolaterally or in the sagittal plane ventrodorsally. Choose the distal locking and locking screw combination according to the need of the fracture localization and distal fragment size (Fig. 14).

It is necessary to check anatomic reduction, correct fragment position and the length of the tibial bone before performance of the distal locking. Set X-ray device above the distal holes in the nail in a way that those will be displayed as circles (Fig. 15).

Place the tip of the scalpel on the skin above the hole centre, and perform a stab incision with a scalpel down to the bone (Fig. 16).

Attach the appropriate drill into the drilling machine and introduce into the performed incision along with a protection sleeve, tilt and adjust under X-ray device so that the drill tip will be positioned exactly in the centre of the hole circle (Fig. 17). **Possibly use the shortened drills of the relevant diameters for the distal hole drilling; there are no protection sleeves in the set for these drills.**

Drill of Ø 2.9 mm for nails of Ø 8 mm

Drill of Ø 3.5 mm for locking screw of Ø 5 mm, full thread

Drill of Ø 4.4 mm for locking reinforced screw of Ø 5 mm, lowered thread

8

Then rotate drilling machine with a drill so that it is perpendicular to the axis of the nail and drill a hole through both cortices. Check the position and aiming of the drill into the locking hole using an X-ray amplifier. Measure the screw length using a depth gauge through the guide sleeve (with little tongues) pushed tightly to the bone (Fig. 18).

Attach the locking screw onto the screwdriver and perform its screwing in. The self-tapping tip of the locking screw has to exceed 1-2 mm over the bone contour. Introduce the other distal locking screws as needed (Fig. 19).

10. Closure of the operation

After irrigation gradually close the incision. Introduce the sucking drain to the place of the nail introduction in the case that the cavity was not pre-drilled.

THE SUCKING DRAIN APPLICATION TO THE PLACE OF THE NAIL INTRO-DUCTION TO THE BONE IS NOT RECOMMENDED IN THE CASE OF THE ENTRY POINT PRE-DRILLING. THE DRAIN WOULD SUCK BLOOD DIRECT-LY FROM THE CAVITY AND IT WOULD RESULT IN A BIG BLOOD LOSS.

Cover the wound with a soft bandage and perform an X-ray documentation.

11. Final notes

- Never combine different osteosynthetic materials in one patient.
- The MEDIN company requires to use their own implants only to guarantee safe use of the implant. Implants from different companies must never be combined.
- The patient must be warned that the implant does not bear the entire weight of the patient. The patient must use support when walking and burden the implant progressively depending on how callus is being created at the fracture healing site.
- The implants are intended for single use, single patient and single bone stabilization only. Repeated use is forbidden. This fact is stated in the product leaflet and is valid for all implants.

12. Removal of the implants

Implants are mostly retained permanently.

When removing the implant, gradually remove the end cap/compression screw and after the screws from the distal and proximal parts of the nail. Nail extraction rod should be screwed into the nail before removing the last locking screw from the nail to prevent possible slide or rotation of the nail in the tibial medullary cavity. Slide the weights onto the extraction rod and screw a handle to it. Extract the nail with blows of the weight against the handle.

Note: This part of the instrumentation has to be hold constantly after the weight and handle attachment to avoid burden of the fused bone by a bending moment.

FULL PROXIMAL TIBIAL NAILS

Full proximal tibial nail

SSt	Ti	А	Ø
397 129 78 1500	397 129 78 1503	240 mm	8mm
397 129 78 1510	397 129 78 1513	255 mm	8mm
397 129 78 1520	397 129 78 1523	270 mm	8mm
397 129 78 1530	397 129 78 1533	285 mm	8mm
397 129 78 1540	397 129 78 1543	300 mm	8mm
397 129 78 1550	397 129 78 1553	315 mm	8mm
397 129 78 1560	397 129 78 1563	330 mm	8mm
397 129 78 1570	397 129 78 1573	345 mm	8mm
397 129 78 1580	397 129 78 1583	360 mm	8mm
397 129 78 1610	397 129 78 1613	270 mm	9mm
397 129 78 1620	397 129 78 1623	285 mm	9mm
397 129 78 1630	397 129 78 1633	300 mm	9mm
397 129 78 1640	397 129 78 1643	315 mm	9mm
397 129 78 1650	397 129 78 1653	330 mm	9mm
397 129 78 1660	397 129 78 1663	345 mm	9mm
397 129 78 1670	397 129 78 1673	360 mm	9mm
397 129 78 1680	397 129 78 1683	375 mm	9mm
397 129 78 1690	397 129 78 1693	390 mm	9mm
397 129 78 1700	397 129 78 1703	405 mm	9mm
397 129 78 1710	397 129 78 1713	420 mm	9mm
397 129 78 1740	397 129 78 1743	270 mm	10 mm
397 129 78 1750	397 129 78 1753	285 mm	10 mm
397 129 78 1760	397 129 78 1763	300 mm	10 mm
397 129 78 1770	397 129 78 1773	315 mm	10 mm
397 129 78 1780	397 129 78 1783	330 mm	10 mm
397 129 78 1790	397 129 78 1793	345 mm	10 mm
397 129 78 1800	397 129 78 1803	360 mm	10 mm
397 129 78 1810	397 129 78 1813	375 mm	10 mm
397 129 78 1820	397 129 78 1823	390 mm	10 mm
397 129 78 1830	397 129 78 1833	405 mm	10 mm
397 129 78 1840	397 129 78 1843	420 mm	10 mm

CANNULATED PROXIMAL TIBIAL NAILS

Cannulated proximal tibial nail

SSt	Ti	А	Ø
397 129 78 2090	397 129 78 2093	270 mm	9mm
397 129 78 2100	397 129 78 2103	285 mm	9mm
397 129 78 2110	397 129 78 2113	300 mm	9mm
397 129 78 2120	397 129 78 2123	315 mm	9mm
397 129 78 2130	397 129 78 2133	330 mm	9mm
397 129 78 2140	397 129 78 2143	345 mm	9mm
397 129 78 2150	397 129 78 2153	360 mm	9mm
397 129 78 2160	397 129 78 2163	375 mm	9mm
397 129 78 2170	397 129 78 2173	390 mm	9mm
397 129 78 2180	397 129 78 2183	405 mm	9mm
397 129 78 2190	397 129 78 2193	420 mm	9mm
397 129 78 2220	397 129 78 2223	270 mm	10 mm
397 129 78 2230	397 129 78 2233	285 mm	10 mm
397 129 78 2240	397 129 78 2243	300 mm	10 mm
397 129 78 2250	397 129 78 2253	315 mm	10 mm
397 129 78 2260	397 129 78 2263	330 mm	10 mm
397 129 78 2270	397 129 78 2273	345 mm	10 mm
397 129 78 2280	397 129 78 2283	360 mm	10 mm
397 129 78 2290	397 129 78 2293	375 mm	10 mm
397 129 78 2300	397 129 78 2303	390 mm	10 mm
397 129 78 2310	397 129 78 2313	405 mm	10 mm
397 129 78 2320	397 129 78 2323	420 mm	10 mm
397 129 78 1870	397 129 78 1873	270 mm	11 mm
397 129 78 1880	397 129 78 1883	285 mm	11 mm
397 129 78 1890	397 129 78 1893	300 mm	11 mm
397 129 78 1900	397 129 78 1903	315 mm	11 mm
397 129 78 1910	397 129 78 1913	330 mm	11 mm
397 129 78 1920	397 129 78 1923	345 mm	11 mm
397 129 78 1930	397 129 78 1933	360 mm	11 mm
397 129 78 1940	397 129 78 1943	375 mm	11 mm
397 129 78 1950	397 129 78 1953	390 mm	11 mm
397 129 78 1980	397 129 78 1983	270 mm	12 mm
397 129 78 1990	397 129 78 1993	285 mm	12 mm
397 129 78 2000	397 129 78 2003	300 mm	12 mm
397 129 78 2010	397 129 78 2013	315 mm	12 mm
397 129 78 2020	397 129 78 2023	330 mm	12 mm
397 129 78 2030	397 129 78 2033	345 mm	12 mm
397 129 78 2040	397 129 78 2043	360 mm	12 mm
397 129 78 2050	397 129 78 2053	375 mm	12 mm
397 129 78 2060	397 129 78 2063	390 mm	12 mm

NOTES:

IMPLANTS FOR THE PROXIMAL TIBIAL NAILS

Compression screw

End cap

SSt	Ti	Ø	for nail
397 129 79 1800	397 129 79 1803	3,2 mm	Ø8mm
397 129 79 1810	397 129 79 1813	4,4 mm	Ø 9–12 mm

SSt	Ti	А
397 129 78 1420	397 129 78 1423	12 mm
397 129 78 1430	397 129 78 1433	22 mm
397 129 78 1440	397 129 78 1443	27 mm

thread diameter	5,0 mm
core diameter	3,5 mm
head diameter	8,0 mm
drill for thread	Ø 3,5 mm
drill for sliding hole	Ø 5,0 mm
screwdriver	O 5,0 mm

Locking screw 5 mm, full thread

SSt	Ti	А
397 129 79 1510	397 129 79 1513	25 mm
397 129 79 1530	397 129 79 1533	30 mm
397 129 79 1550	397 129 79 1553	35 mm
397 129 79 1570	397 129 79 1573	40 mm
397 129 79 1590	397 129 79 1593	45 mm
397 129 79 1610	397 129 79 1613	50 mm
397 129 79 1630	397 129 79 1633	55 mm
397 129 79 1650	397 129 79 1653	60 mm
397 129 79 1670	397 129 79 1673	65 mm
397 129 79 1690	397 129 79 1693	70 mm
397 129 79 1710	397 129 79 1713	75 mm
397 129 79 1730	397 129 79 1733	80 mm
397 129 79 1750	397 129 79 1753	85 mm
397 129 79 1770	397 129 79 1773	90 mm
397 129 79 1290	397 129 79 1293	95 mm
397 129 79 1300	397 129 79 1303	100 mm
397 129 79 1310	397 129 79 1313	105 mm

IMPLANTS FOR THE PROXIMAL TIBIAL NAILS

5,0 mm
4,4 mm
8,0 mm
Ø 4,4 mm
Ø 5,0 mm
O 5,0 mm

The strengthened locking screw 5 mm

SSt	Ti	А
397 129 79 9631	397 129 79 9634	25 mm
397 129 79 9641	397 129 79 9644	30 mm
397 129 79 9651	397 129 79 9654	35 mm
397 129 79 9661	397 129 79 9664	40 mm
397 129 79 9671	397 129 79 9674	45 mm
397 129 79 9681	397 129 79 9684	50 mm
397 129 79 9691	397 129 79 9694	55 mm
397 129 79 9701	397 129 79 9704	60 mm
397 129 79 9711	397 129 79 9714	65 mm
397 129 79 9721	397 129 79 9724	70 mm
397 129 79 9731	397 129 79 9734	75 mm
397 129 79 9741	397 129 79 9744	80 mm
397 129 79 9751	397 129 79 9754	85 mm
397 129 79 9761	397 129 79 9764	90 mm

thread diameter	3,5 mm
core diameter	2,9 mm
head diameter	5,6 mm
drill for thread	Ø 2,9 mm
drill for sliding hole	Ø 3,5 mm
screwdriver	O 3,5 mm

The strengthened locking screw 3.5 mm

SSt	Ti	А
397 129 77 6551	397 129 77 6554	20 mm
397 129 77 6561	397 129 77 6564	22 mm
397 129 77 6571	397 129 77 6574	24 mm
397 129 77 6581	397 129 77 6584	26 mm
397 129 77 6591	397 129 77 6594	28 mm
397 129 77 6601	397 129 77 6604	30 mm
397 129 77 6611	397 129 77 6614	32 mm
397 129 77 6621	397 129 77 6624	34 mm
397 129 77 6631	397 129 77 6634	36 mm
397 129 77 6641	397 129 77 6644	38 mm
397 129 77 6651	397 129 77 6654	40 mm
397 129 77 6661	397 129 77 6664	42 mm
397 129 77 6671	397 129 77 6674	44 mm
397 129 77 6681	397 129 77 6684	46 mm
397 129 77 6691	397 129 77 6694	48 mm
397 129 77 6701	397 129 77 6704	50 mm
397 129 77 6711	397 129 77 6714	55 mm
397 129 77 6721	397 129 77 6724	60 mm
397 129 77 6731	397 129 77 6734	65 mm
397 129 77 6741	397 129 77 6744	70 mm

INSTRUMENTATION FOR THE PROXIMAL TIBIAL NAILS

397 139 09 0375

75 Set of instruments for tibial nails 540 × 240 × 90 mm instruments included

397 139 09 0370

set

			pcs				pcs
1	397 129 68 1040	Pre-drilling cutter of Ø 9/12 x 180 mm	1	15	397 129 69 6420	Sleeve of Ø 8/3.5 x 171 mm	2
2	397 129 68 1050	Protection sleeve of Ø 12 mm	1	16	397 129 69 9781	Drill of Ø 3.5×150 mm	1
3	397 129 68 1060	Cannulated perforator chisel of Ø 12 mm	1	17	397 129 69 6631	Drill of Ø 3.5×320 mm	2
4	397 129 68 1020	Screwdriver 6HR 3.5 \times 200 mm with locking	1	18	397 129 69 6430	Sleeve of Ø 8/4.4 x 171 mm	2
5	397 129 68 1030	Screwdriver 6HR 5 $ imes$ 200 mm with locking	1	19	397 129 69 6641	Drill of Ø 4.4×320 mm	2
6	397 129 69 5670	Mallet	1	20	397 129 69 9771	Drill of Ø 2.9/150 mm	1
7	397 129 69 5660	Impactor	1	21	397 129 69 6440	Sleeve of Ø 8/2.9 x 171 mm	1
8	397 129 69 6100	Wrench rod	1	22	397 129 69 6460	Sleeve of Ø 8/2.5 x 171 mm	1
9	BD23-110-AO	Handle AO; $30 \times 151 \text{ mm}$	1	23	397 129 69 6470	Trocar of Ø 8 x 182 mm	1
10	BT19-095-AO	T-handle AO; 95 $ imes$ 81 mm	1	24	397 129 69 6621	Drill of Ø 2.9×320 mm	2
11	397 129 69 7320	Reduction M12/M8 \times 1	1	25	397 129 69 7210	Plug Ø 10 x 30 mm	4
12	397 129 69 6400	Sleeve of Ø 10/8 x 155 mm	3	26	397 129 69 9791	Drill of Ø 4.4×150 mm	1
13	397 129 68 1100	Depth gauge	1	27	397 129 09 2570	K-wire MEDIN of Ø 2 x 300 mm	3
14	397 129 68 1090	Cannulated curved perforator of Ø 13 mm	1	28	397 129 69 5780	Tibial aiming device	1

INSTRUMENTATION FOR TIBIAL NAILS

397 129 69 6610 Sieve for instrumentation for the proximal tibial nails 540 × 240 × 90 mm *excluding instruments*

397 129 69 6570 Stand for the locking screws 2.5 and 3.5 mm 212 × 154 × 98 mm *without the implants*

PROXIMAL TIBIAL NA	ILS	5
--------------------	-----	---

of this docum

© 2017 MEDIN, a.s.; All rights reserved.

This document is intended for business purposes of MEDIN, a.s.; the data presented in the document are of an informative nature. No part of this document may be copied or published in any form without a prior consent of MEDIN, a.s. Product display meets the current state at the time of the document publication. Changes of the technical parameters from the reason of further development reserved. Printing and typographical errors are reserved.

